
Incorporating Innovation Into Iterative Software

Development Using The Inventive Problem Solving

Methodology
 Ron Fulbright

University of South Carolina Upstate
800 University Way

Spartanburg, SC 29303
(01) 864-503-5683

rfulbright@uscupstate.edu

ABSTRACT

Iterative software methodologies allow development teams to be

agile in their response to changing requirements and dynamic

projects environments. Largely, however, the development team is

limited to being reactive to requirement churn occurring outside

the purview of the software development team itself. This paper

describes a method based on the study of over two million

patents, called inventive problem solving, allowing software

development teams to be innovative, actively engineer changes to

requirements, and discover new requirements by exploring

alternatives to the problem solution.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – lifecycle, software

development methodologies.

Keywords

Software engineering, software development methodologies,

iterative software development, spiral software development, agile

software development, Rational Unified Process, Scrum,

innovation, inventive problem solving, TRIZ, I-TRIZ.

1. INTRODUCTION
Over the last twenty-five years, iterative software development

methodologies such as the spiral method, Rational Unified

Process, agile software development, and Scrum have grown in

response to weaknesses of the traditional sequential waterfall

methodology. Iterative models incrementally evolve a software

solution through repeated cycles of analysis, planning,

prototyping, and review. The ―design a little, build a little‖

characteristic of these methodologies mitigate risk and reduce

waste because the solution continually changes following dynamic

feedback.

All software development models contain some form of the basic

lifecycle activities required to build and maintain a successful

software solution: requirements extraction and definition,

analysis, planning, design, coding, implementation, testing,

deployment, verification, and maintenance.

Software solutions are constructed to solve a problem. Typically,

before a software development project begins, the problem to be

solved has already been identified and assumptions/decisions as to

how to solve the problem have already been made. Consequently,

the initial activities in a software development such as scope

definition, business case, use case, risk assessment, etc. are biased

toward the pre-defined overall problem solution architecture. As a

result, software developers seldom ―work on the problem‖ they

instead ―work on the solution.‖

At first, this may not seem problematic. What else is a software

development team supposed to work on? However, what if there

is a better way to solve the problem? What if the development

team is building an inferior solution because a better approach

goes unnoticed? It makes sense for the software development

team to have a chance to explore alternative problem solutions

early in the development process, even before, or at least as a part

of, the project scoping and requirements definition phases. Since

the software development team is better equipped to understand

the technology, they are likely to envision alternative solutions no

one else can. What is needed is a way to innovate about the

problem solution during software development.

This paper proposes the use of a generic innovation technique

called inventive problem solving (IPS) and suggests ways to

incorporate the technique into iterative software development

methodologies. The paper first describes iterative software

methodologies and then presents details of IPS. An integration of

IPS and the spiral methodology, the Rational Unified Process, and

the Scrum methodology is proposed. A case study demonstrating

how IPS yields a different set of software requirements for a

collaborative crisis management solution is described.

2. ITERATIVE METHODOLOGIES
Although not the first iterative methodology conceived, Boehm’s

spiral model introduced in the mid-1980s marks a flex point in the

history of software methodologies. Prior to the spiral model, the

waterfall method was the predominant software methodology.

Instead of a sequentially stepping through the development

phases, the spiral model employed a ―design a little, build a little‖

approach whereby the design of the final solution evolves along

with the solution itself through multiple iterations of prototype

and review [1]. As seen in Figure 1, development is depicted as a

trajectory spiraling outward from the center in a clockwise

direction through four quadrants, or phases. Each time around the

cycle, the software solution gets a little more mature. Getting buy-

in from users early in the development process and maintaining

that support throughout development insures a desirable solution

is being built. Note the first quadrant, the determine objectives,

alternatives, and constraints phase, is where innovation should

take place (alternatives).

Throughout the 1990s, another iterative methodology evolved, the

Rational Unified Process (RUP) [2]. The RUP is characterized by

four phases: inception, elaboration, construction, and transition.

Development iterates within each phase until certain completeness

criteria are met. In each phase, different amounts of analysis,

design, implementation, test, and deployment are performed. The

RUP can be thought of as a superposition of waterfall and

iterative methods. As expected, activities like business modeling,

requirements definition, analysis and design are more prevalent in

the earlier phases of inception and elaboration and this is where

innovation should take place. The RUP is shown in Figure 2.

In Scrum, another iterative software development methodology

coming of age in the 1990s and in vogue in the 2000s, the notion

of iterative development is embodied in timeboxed periods called

sprints—typically 2-4 week time periods resulting in the full

development of a portion of the software solution [3]. A smaller

iteration, the daily scrum focuses team tasking during the sprint.

At the beginning of each sprint, the sprint planning meeting

chooses which requirements to focus development on during the

sprint. The deliverable from each sprint is a piece of fully

functioning software fulfilling the chosen requirements.

Innovation should take place in the sprint planning meeting, the

daily scrum, and in the original requirements definition. The

Scrum methodology is depicted in Figure 3.

All iterative methodologies accept the fact that the final solution

cannot be known in its entirety before implementation begins

because requirements constantly change. The goal of iterative

software development methodologies is to make the development

team as agile as possible and ready to respond quickly to such

changes. However, rarely do methodologies give the development

team the tools with which to engineer the changes and this is the

promise of the inventive problem solving technique described in

the next section.

3. INVENTIVE PROBLEM SOLVING
TRIZ (pronounced ―trees‖) is an acronym for the Russian phrase

"Teoriya Resheniya Izobretatelskikh Zadatch" or ―The Theory of

Inventive Problem Solving‖ and dates back to 1946 when Russian

engineer, scholar, and inventor Genrich Altshuller started

reviewing patents looking for clues as to how inventive people

solve problems [4]. Over the following four decades, TRIZ grew

into nothing less than the science of technological evolution but

was largely unknown to the Western world until the 1980s when

some of Altshuller’s work was translated into English. This

classical era of TRIZ saw the development of a number of tools

and techniques designed to help practitioners inventively solve

technical problems.

With the collapse of the Soviet Union in the late 1980s, TRIZ

scholars and colleagues moved to other parts of the world where

some have continued to extend the art and the science of TRIZ.

One group, based in the United Stated, developed a modern

extension called I-TRIZ (for ―Ideation TRIZ‖) comprising four

methodologies [5]:

 IPS: Inventive Problem Solving

 AFD: Anticipatory Failure Determination

 IP: Intellectual Property Protection

 DE: Directed Evolution

 dev plan

Determine objectives,
alternatives, and
constraints

1
 Evaluate alternatives, identify

and resolve risks
2

 Develop, verify
next-level product 3 Plan next phase 4

 code

 integrate

 test

 design Integration plan

 req

Prototype

Simulation

Figure 1. The Spiral Development Model.

.

Figure 2. The Rational Unified Process.

.

Figure 3. The Scrum Methodology.

.

AFD is a way of analyzing potential failure modes of systems and

devising ways to prevent those types of failures. DE is a method

of ―inventing the future‖ and looking five and ten years ahead of

the state of the art. IP contains ways to ―invent the future

competition‖ before your competitors do, and thereby protect

yourself by already owning the intellectual property your

competitors will have to invent to compete with you.

This paper involves IPS, a generic methodology enabling

practitioners to innovate on demand about any type of system in

any domain. At the heart of IPS is a database of over 400

operators. Each operator is an innovative concept gleaned from

the study of over two million patents by TRIZ scholars.

Practitioners use operators to stimulate thinking about ways to

improve the system. Figure 4 shows the IPS methodology.

In the scoping phase, practitioners along with subject matter

experts identify resources, constraints, and selection criteria.

Combined with a systems analysis called the 8-way analysis, the

equivalent of a scope document (as used in traditional software

development methodologies) is created. Through the scoping and

analysis phases, practitioners create six different abstract

descriptions of the system, each from a different perspective:

supersystem/subsystem, input/output, cause/effect, past/future,

useful/harmful, and produces/counteracts relationships. These

descriptions are used to create a graphical representation of the

problem domain known as the problem formulator (PF) diagram.

The PF diagram captures the relationship between the desirable

and undesirable characteristics of the system and exposes areas of

the system most likely to benefit from an incremental change (an

innovation). The PF diagram is used in conjunction with the

operator database to generate dozens of potential innovative

solutions.

An example of one of the operators is Add-a-marker:

Add a marker
Add a marker that can become the source of an easily
detected field.

Adding radioactive dye to the bloodstream during an angiogram is

an example of this concept in use (see Figure 5).

The Add-a-marker operator is one of the concepts gleaned from

the study of over two million patents. The theory behind IPS is

that no matter what type of system is being studied one or more

operators will be applicable and will likely stimulate a new idea.

Often, a combination of several operators forms an innovative

solution. For example, consider the containment ring problem in a

jet engine. The containment ring is a thick and heavy metallic

shield preventing fragments from exiting the engine nacelle and

damaging other parts of the aircraft in the event of a catastrophic

failure of the turbine blades. However, the weight and bulkiness

of the containment ring makes it difficult and expensive to remove

and test as is periodically required. Dozens of potential solutions

to this problem can be envisioned by applying various operators.

For example, applying the operators:

 Segmentation

 Separation in time

 Separation on condition

 Introduce a liquid

 Add an intermediate layer

 Use a foam or empty space

 Abandon symmetry

yields a solution where non-uniform concentric ring arc segments

containing a non-Newtonian fluid impact gel replaces the bulky

containment ring as shown in Figure 6. For testing, the liquid is

drained and the segments removed and tested individually.

Having a summary of human innovative concepts available to us

in the form of the operator database gives us the ability to apply

Figure 4. The IPS Methodology.

.

Scoping

Analysis

Problem
Formulation

Generation

Idea
Selection

 Resources

 Constraints

 Criteria

 Input/Output

 Cause/Effect

 Past/Future

 Super/Subsystem Useful/Harmful

 Problem Formulation

Diagram

 Produces/Counteracts

 Operator Database

 Case Studies

 Potential innovative solutions

Figure 5. Adding a marker to the bloodstream.

.

Figure 6. Innovative solution to the containment ring problem.

.

the force of human innovational history to whatever problem we

have at hand—including software.

4. THE CASE STUDY
Over a decade ago, the author was a senior software architect

involved in a collaborative problem solving solution for a major

oil company [6]. The development team utilized the spiral

lifecycle model and created a successful solution that won the

Microsoft Collaborative Application of the Year Award for 2001

winning over several hundred entrants worldwide. Recently, the

author revisited the original requirements using the IPS

methodology. Originally, this was done simply to demonstrate the

use of IPS in the software engineering domain. However, systems

analysis and problem formulation in the IPS methodology

exposed key areas in the problem domain previously not

considered by the original development team. If we had included

these, our solution would have been superior.

When our client came to us originally, they described a ―war

room‖ problem-solving method which had been honed over

several decades as an industry leader. When a crisis began, a

conference room, or set of offices, were commandeered and

turned into the central control hub dedicated to the management

of the crisis and solution of the problem. All information and

pertinent documents were collected and stored in this location and

all communications were handled through this central command.

Average problem resolutions took 3-5 days. Understanding the

potential of the Internet, email, and World Wide Web-based

communication, the company asked us to ―create a virtual war

room‖ to support global problem resolution and crisis

management efforts. Their intent was to free themselves from the

limitations of a physical war room and to reduce problem

resolution time by at least 50%.

Therefore, when the development team began the

design/prototype spirals, we sought only to flesh out the

requirements of the ―virtual war room.‖ We never thought about

making changes to the underlying crisis management process. Our

solution simply ―virtualized‖ the style of problem solving

engrained into the corporation. When we acquired input from the

user community, they dutifully described to us what they needed

in the virtual space to do their jobs as they had been doing them in

the physical war room.

Recently when IPS was used, it was apparent IPS ―viewed‖ the

problem domain from a perspective different than the user-centric

perspective we encountered using the spiral model. IPS facilitated

study of the underlying problem and resulted in the definition of

several changes to the crisis management process itself. Once new

approaches were identified, it was a relatively simple matter to

envision additional features needed in the software solution. Not

only did the innovative analysis show a better way to manage

crises, it defined new requirements for the software solution.

Figure 7 shows a portion of the problem formulator diagram

resulting from the IPS analysis.

An example of a new feature discovered during innovative

analysis was the ―launch multiple simultaneous scenarios‖

concept. System analysis using the IPS methodology showed the

dependency on sequential time-consuming processes. Crisis teams

generally spent 1-3 days characterizing the problem and

identifying experts in that problem domain to bring in on the

resolution discussions. Only after a solution was agreed to was

effort expended to get materiel and personnel moving toward the

site of the crisis.

problem gets
resolved

solution is
implemented

solution
requirements
communicated

solution is
identified

expert selects
possible solutions

expert is
identified

problem is
characterized

data acquisition is
difficult

situation changes
rapidly

expert matched
with problem

many experts
exist

expertise is
unknown

experts located
globally

dialog with expert
difficult

expert dialogs
with site

equipment is
damaged

required materials
identified

materials available
at site

materials not on
site

materials
requisitioned

materials ordered

During analysis, IPS suggested consideration of the following

operators:

 Duplicate critical elements

 Utilize time resources

 Partial action

 Preliminary action

 Apply multiple actions

 Multiply functions

 Preliminary dispensing

 Preliminary placement

 Modify time intervals

 Selective amplification

 Simultaneous operation

The combination of these concepts applied to the ―sequential‖

nature of the company’s crisis management process, suggested the

idea of launching several different solution scenarios the moment

a crisis begins. As more information about the nature of the crisis

becomes available, the team can cancel those scenarios that do not

apply. Even if a scenario must be altered for a particular crisis,

getting it underway as early as possible could save as much as 2

days in problem resolution time. So rather than spending time

collecting information and opinion to decide which resolution

scenario to launch, the company should launch several, then use

new information and expert opinion to ―stand down‖ the scenarios

that will not help. If the original software development team had

done this analysis a decade ago, we would have built into the

virtual war room several mechanisms directly supporting potential

response scenarios, status tracking and reporting of response

Figure 7. Problem Formulator Diagram (partial).

.

scenario activity, and ―go/no go‖ polling on response scenario

decisions.

Another example of a new feature suggested by the innovative

analysis is a decidedly information technology-oriented idea. A

major component of the company’s crisis management effort was

the characterization of the problem and the identification of the

person, or persons, in the company possessing expert-level

knowledge about critical elements of the problem. As the crisis

developed and more information was obtained, users found great

utility in the virtual war room’s ability to connect easily and

quickly with others. However, the virtual war room did little to

assist in associating experts with the crisis itself. As a result, even

with the virtual war room, expert identification time took as along

as 2 days. During the innovative analysis, several of the same

operators mentioned above suggested the idea that experts be

―pre-matched‖ with various types of problems likely to be

encountered. If the original software development team had

conceived of this, we would have automatically indexed and

categorized employees’ emails, published papers and other

documents, job roles, etc. to score their likely application to

various kinds of problems the company had faced in the past.

With such a tool built into the virtual war room, the crisis

management team would have been presented with a list of ―likely

experts‖ every time a new piece of information was added. This

would have reduced problem resolution time by 1-2 days.

The IPS analysis exposed different, but complimentary,

requirements than the original development project encountered

using the spiral model. When this was realized, the notion struck

that IPS and iterative methodologies should be combined in some

way.

5. INNOVATIVE ITERATIONS
IPS gives practitioners a way to identify alternatives to a system.

For a software development team, the ―system‖ is the software

solution being developed and also the problem being solved by

the software solution. Therefore, IPS gives development teams the

ability to innovate about the software and the problem domain at

the same time. For this reason it is reasonable to fit IPS into

iterative methodologies during the planning, analysis, and

definition phases.

Figure 8 shows an innovate wedge added to the first quadrant of

the spiral model. This phase is where objectives, constraints, and

alternatives are to be developed and these are certainly some of

the outputs of IPS. Furthermore, other artifacts from IPS fit nicely

into the first and second phase of the spiral model. Used early in

the development process (the first or second spiral) will allow the

development team to think of new ways to solve the problem, as

was the case described above. Using IPS in later spirals will allow

the development team to think of new ways to design and

implement specific pieces of the solution.

Figure 9 shows the RUP methodology with an innovation

discipline added. Increased amounts of innovation can be

expected in the Inception and Elaboration phases with reduced

amounts of innovation in the Construction phase. An initial

increase in the Transition phase is expected as the team thinks of

new deployment/maintenance strategies.

Figure 10 shows the Scrum methodology modified with an

innovation process driving both the product backlog, the master

list of requirements for the solution, and the sprint backlog, the

list of requirement targets for the current sprint.

Two different IPS processes are shown because it is likely that

different types of innovative analyses will be required for the

Determine objectives,
alternatives, and
constraints

1
 Evaluate alternatives, identify

and resolve risks
2

 Develop, verify
next-level product 3 Plan next phase 4

 code

 integrate

 test

 design Integration plan

 req

Prototype

Simulation

Innovation

 Input/Output

 Cause/Effect

 Past/Future

 Alternative solutions Super/Subsystem

 Constraints

 Criteria

 Useful fx

 Harmful fx

Figure 8. The Spiral Method With Innovation.

.

Figure 9. The RUP Methodology With Innovation.

.

Figure 10. The Scrum Methodology With Innovation.

.

IPS IPS

product and sprint backlogs. The product backlog requires more

problem domain innovation, such as that discussed in the case

study, whereas the sprint backlog requires more innovation about

the software implementation itself.

6. CONCLUSION
All of the iterative methodologies described in this paper, and

many more not explicitly described here, enable a software

development team to respond quickly to changing requirements.

One goal of the iterations is to commit as few resources as

possible to implementation before permitting more changes to the

requirements. However, methodologies poorly address how

changing requirements are identified nor give development teams

tools with which to discover new requirements.

IPS provides a technique to explore alternative ways to solve the

problem being addressed by the software solution and also a tool

to explore alternative ways to implement the software solution.

Most tools in software development methodologies just give

developers ways to design the software and take as a starting point

various assumptions and decisions already made before the

software engineering process begins.

As shown in the case study, innovative analysis allows the

development team to extend itself beyond the software system

being developed and explore the original problem domain. In this

way, incorporating innovative analysis into iterative software

development methodologies gives development teams a way to

engineer changes to the requirements in a way previously not

possible.

7. REFERENCES
[1] Boehm, B, A. 1986. Spiral Method of Software Development

and Enchancement. ACM SIGSOFT Engineering Notes. 11,

4 (August 1986), 14-24. Figure 1 is reproduced from this

paper.

[2] Krutchen, P. 2003. The Rational Unified Process-An

Introduction. 3rd Edition, Addison-Weseley. Figure 2 is a

public domain image obtained from http://en.wikipedia.org/

wiki/Image:RationalUnifiedProcess.png, April 2010.

[3] Schwaber, K., Beedle, M. 2002. Agile Project Management

with SCRUM. Prentice Hall. Figure 3 is a public domain

image obtained from http://en.wikipedia.org/wiki/

File:Scrum_process.svg, April 2010.

[4] Altshuller, G. 1999. Innovation Algorithm: TRIZ, systematic

innovation and technical creativity. Technical Innovation

Center, Worcester, MA.

[5] Zusman, A. 1999. Roots, structure, and theoretical base.

TRIZ in Progress: Transactions of the Ideation Research

Group. Roza, V. ed. Ideation International Inc., Southfield,

MI.

[6] Fulbright, R. 2001. TeamSuite Feature Description.

ECMS/IT Factory Technical Report MSEC-061001-A-RDF.

Available from the author.

